 MLE, MAP / prior, posterior, likelihood
					베이지안 머신러닝 모델 모델 파라미터를 고정된 값이 아닌 불확실성(uncertainty)을 가진 확률 변수로 보는 것, 데이터를 관찰하면서 업데이트되는 값으로 보는 것 베이즈 정리(Bayes' theorem) prior(prior probability, 사전 확률) 데이터를 관찰하기 전 파라미터 공간에 주어진 확률 분포 확률분포 먼저 고정 후 데이터 받음. p(θ) likelihood(가능도, 우도) 파라미터의 분포 p(θ)가 정해졌을 때 x라는 데이터가 관찰될 확률 prior 분포를 고정한 후, 주어진 파라미터 분포에 대해서 우리가 갖고 있는 데이터가 얼마나 '그럴듯한지' 계산하는것 p(X=x∣θ) , L(θ∣x) 입력 데이터의 집합을 X, 라벨들의 집합을 Y라고 할 때, likelihood는 파라미터..
				
						2023. 1. 18.
						
					
					MLE, MAP / prior, posterior, likelihood
					베이지안 머신러닝 모델 모델 파라미터를 고정된 값이 아닌 불확실성(uncertainty)을 가진 확률 변수로 보는 것, 데이터를 관찰하면서 업데이트되는 값으로 보는 것 베이즈 정리(Bayes' theorem) prior(prior probability, 사전 확률) 데이터를 관찰하기 전 파라미터 공간에 주어진 확률 분포 확률분포 먼저 고정 후 데이터 받음. p(θ) likelihood(가능도, 우도) 파라미터의 분포 p(θ)가 정해졌을 때 x라는 데이터가 관찰될 확률 prior 분포를 고정한 후, 주어진 파라미터 분포에 대해서 우리가 갖고 있는 데이터가 얼마나 '그럴듯한지' 계산하는것 p(X=x∣θ) , L(θ∣x) 입력 데이터의 집합을 X, 라벨들의 집합을 Y라고 할 때, likelihood는 파라미터..
				
						2023. 1. 18.
					
				
			 
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
				
					
						
							 확률과 통계
					1. 확률 (Probability) 이항(discrete) / 연속(continuous) 서로 배타적(mutually exclusive) : 시행의 모든 시도에서 한 사건 발생 시 다른 하나사건이 발생하지 않을 경우 집합(set), 원소(elements), 사건(events), 부분집합(subset), 전체집합(universal set), 공집합(null,empty set) 교집합(intersection), 합집합(union), 같음(equality) 여집합(complementary set; Set - A), 차집합(difference; A-B != B-A in Union), 서로소집합(disjoint set; A and B are mutually exclusive) A1,A2,…,An 이 서로 배..
				
						2023. 1. 16.
						
					
					확률과 통계
					1. 확률 (Probability) 이항(discrete) / 연속(continuous) 서로 배타적(mutually exclusive) : 시행의 모든 시도에서 한 사건 발생 시 다른 하나사건이 발생하지 않을 경우 집합(set), 원소(elements), 사건(events), 부분집합(subset), 전체집합(universal set), 공집합(null,empty set) 교집합(intersection), 합집합(union), 같음(equality) 여집합(complementary set; Set - A), 차집합(difference; A-B != B-A in Union), 서로소집합(disjoint set; A and B are mutually exclusive) A1,A2,…,An 이 서로 배..
				
						2023. 1. 16.
					
				
			 
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
		
		
	
                
            
                
		
			
				
					
						
							 이미지처리 Basic
					영상처리 사용목적에 따라 적절히 처리하여 개선된 영상을 생성하는것 노이즈제거, 대비(contrast)개선, 관심영역(region of interest)강조,영역분할(segmentation), 압축 및 저장 저수준 : 영상 획득, 향상, 복원 ,변환처리, 압축 고수준 (Computer Vision) : 영상 분할, 표현, 인식 Color Space : 색을 표현하는 다양한 방식. 색 공간 Channel : 각 컬러스페이스를 구성하는 단일 축 이미지 저장방식 raster, bitmap : 각 점 하나하나의 색상 값을 저장하는 방식. (r, g, b) (255,255,255). 확대시 깨짐 vector : 상대적인 점의 선의 위치를 방적식으로 기록 후 확대 및 축소할 때 각 픽셀의 값을 재계산하여 깨짐이 없음..
				
						2022. 12. 12.
						
					
					이미지처리 Basic
					영상처리 사용목적에 따라 적절히 처리하여 개선된 영상을 생성하는것 노이즈제거, 대비(contrast)개선, 관심영역(region of interest)강조,영역분할(segmentation), 압축 및 저장 저수준 : 영상 획득, 향상, 복원 ,변환처리, 압축 고수준 (Computer Vision) : 영상 분할, 표현, 인식 Color Space : 색을 표현하는 다양한 방식. 색 공간 Channel : 각 컬러스페이스를 구성하는 단일 축 이미지 저장방식 raster, bitmap : 각 점 하나하나의 색상 값을 저장하는 방식. (r, g, b) (255,255,255). 확대시 깨짐 vector : 상대적인 점의 선의 위치를 방적식으로 기록 후 확대 및 축소할 때 각 픽셀의 값을 재계산하여 깨짐이 없음..
				
						2022. 12. 12.
					
				
			 
		
		
	
                
            
                
		
			
				
					
						
							 상관계수, 경사하강법, 손실함수, RMSE, 경사하강법, 선형회귀
					Correlation does not imply causation 상관은 인과를 함축하지 않는다 상관계수 한 변수가 커짐에 따라 다른 변수가 작아지는 관계인 경우, 두 변수는 '상관 관계가 있다'고 하고, 그 관계된 정도는 '피어슨(Pearson) 상관 계수'라고 함. model.fit 모델을 학습시킨다 = 모델의 정확도를 가장 높일 수 있는 최적의 "매개변수(가중치,Weight)" , 혹은 "파라미터(편향,Bias)" 를 찾는다 model.compile 손실함수(loss function) or 비용함수(cost function) predicted y 와 real y 값 간의 차이를 나타내는 함수. 값이 크면 그만큼 둘의 거리가 멀다는 뜻으로, 정확하지 않다는 뜻. 손실값은 작을수록 좋은것! 1) 모델이..
				
						2022. 12. 9.
						
					
					상관계수, 경사하강법, 손실함수, RMSE, 경사하강법, 선형회귀
					Correlation does not imply causation 상관은 인과를 함축하지 않는다 상관계수 한 변수가 커짐에 따라 다른 변수가 작아지는 관계인 경우, 두 변수는 '상관 관계가 있다'고 하고, 그 관계된 정도는 '피어슨(Pearson) 상관 계수'라고 함. model.fit 모델을 학습시킨다 = 모델의 정확도를 가장 높일 수 있는 최적의 "매개변수(가중치,Weight)" , 혹은 "파라미터(편향,Bias)" 를 찾는다 model.compile 손실함수(loss function) or 비용함수(cost function) predicted y 와 real y 값 간의 차이를 나타내는 함수. 값이 크면 그만큼 둘의 거리가 멀다는 뜻으로, 정확하지 않다는 뜻. 손실값은 작을수록 좋은것! 1) 모델이..
				
						2022. 12. 9.