728x90 정규화2 L1, L2 (loss, regularization, norm) L1 loss : MAE 실제값 yi 와 예측값 f(xi)의 편차의 절댓값의 합 L2 loss : MSE 실제값 yi 와 예측값 f(xi)의 편차의 제곱의 합 Robust : L1 > L2 L1이 outlier에 더 robust 하다. (=loss function이 영향을 덜 받는다) 왜냐하면, L2는 편차에 제곱까지 해버리기 때문에 이상치가 나오면 그 편차를 제곱해서 그 영향이 클 수 밖에 없다. outlier가 무시되길 원하면 비교적 영향을 작게받는 L1 loss가 적합하다. Stablity : L2 > L1 L2 loss는 smooth한 convex 형태의 함수로 그래프또한 원형. 그래서 모든 점에서 미분이 가능하다. 그렇기 때문에 미분이 전부인 딥러닝에서는 L2가 계산에 더 안정적이라고 본다. S.. 2023. 3. 12. Regularization, Normalization Normalization(정규화) Scaling input features so that they have similar ranges or distributions. - 데이터 전처리 과정 중 하나. - 데이터의 형태를 좀 더 의미있고, 학습에 적합하게 만드는 과정 - z-score, minmax scaler로 value를 0-1 사이로 분포를 조정 Normalization refers to scaling input features so that they have similar ranges or distributions. This can help prevent certain features from dominating others during training which could lead to biase.. 2023. 1. 11. 이전 1 다음 728x90